首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12434篇
  免费   1118篇
  国内免费   4篇
  2023年   39篇
  2022年   20篇
  2021年   201篇
  2020年   100篇
  2019年   160篇
  2018年   178篇
  2017年   164篇
  2016年   344篇
  2015年   540篇
  2014年   693篇
  2013年   788篇
  2012年   1007篇
  2011年   986篇
  2010年   655篇
  2009年   567篇
  2008年   826篇
  2007年   809篇
  2006年   780篇
  2005年   708篇
  2004年   675篇
  2003年   691篇
  2002年   634篇
  2001年   98篇
  2000年   82篇
  1999年   116篇
  1998年   189篇
  1997年   110篇
  1996年   97篇
  1995年   129篇
  1994年   97篇
  1993年   117篇
  1992年   103篇
  1991年   71篇
  1990年   70篇
  1989年   60篇
  1988年   54篇
  1987年   39篇
  1986年   50篇
  1985年   50篇
  1984年   63篇
  1983年   40篇
  1982年   53篇
  1981年   42篇
  1980年   33篇
  1979年   27篇
  1978年   23篇
  1977年   36篇
  1976年   24篇
  1974年   25篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
In vivo assembly of plasmids has become an increasingly used process, as high throughput studies in molecular biology seek to examine gene function. In this study, we investigated the plasmid construction technique called gap repair cloning (GRC) in two closely related species of yeast – Saccharomyces cerevisiae and Candida glabrata. GRC utilizes homologous recombination (HR) activity to join a linear vector and a linear piece of DNA that contains base pair homology. We demonstrate that a minimum of 20 bp of homology on each side of the linear DNA is required for GRC to occur with at least 10% efficiency. Between the two species, we determine that S. cerevisiae is slightly more efficient at performing GRC. GRC is less efficient in rad52 deletion mutants, which are defective in HR in both species. In dnl4 deletion mutants, which perform less non-homologous end joining (NHEJ), the frequency of GRC increases in C. glabrata, whereas GRC frequency only minimally increases in S. cerevisiae, suggesting that NHEJ is more prevalent in C. glabrata. Our studies allow for a model of the fate of linear DNA when transformed into yeast cells. This model is not the same for both species. Most significantly, during GRC, C. glabrata performs NHEJ activity at a detectable rate (>5%), while S. cerevisiae does not. Our model suggests that S. cerevisiae is more efficient at HR because NHEJ is less prevalent than in C. glabrata. This work demonstrates the determinants for GRC and that while C. glabrata has a lower efficiency of GRC, this species still provides a viable option for GRC.  相似文献   
63.
Kinetochores are large protein complexes that link sister chromatids to the spindle and transduce microtubule dynamics into chromosome movement. In budding yeast, the kinetochore–microtubule interface is formed by the plus end–associated Dam1 complex and the kinetochore-resident Ndc80 complex, but how they work in combination and whether a physical association between them is critical for chromosome segregation is poorly understood. Here, we define structural elements required for the Ndc80–Dam1 interaction and probe their function in vivo. A novel ndc80 allele, selectively impaired in Dam1 binding, displayed growth and chromosome segregation defects. Its combination with an N-terminal truncation resulted in lethality, demonstrating essential but partially redundant roles for the Ndc80 N-tail and Ndc80–Dam1 interface. In contrast, mutations in the calponin homology domain of Ndc80 abrogated kinetochore function and were not compensated by the presence of Dam1. Our experiments shed light on how microtubule couplers cooperate and impose important constraints on structural models for outer kinetochore assembly.  相似文献   
64.
Nox4-derived ROS is increased in response to hyperglycemia and is required for IGF-I-stimulated Src activation. This study was undertaken to determine the mechanism by which Nox4 mediates sustained Src activation. IGF-I stimulated sustained Src activation, which occurred primarily on the SHPS-1 scaffold protein. In vitro oxidation experiments indicated that Nox4-derived ROS was able to oxidize Src when they are in close proximity, and Src oxidation leads to its activation. Therefore we hypothesized that Nox4 recruitment to the plasma membrane scaffold SHPS-1 allowed localized ROS generation to mediate sustained Src oxidation and activation. To determine the mechanism of Nox4 recruitment, we analyzed the role of Grb2, a component of the SHPS-1 signaling complex. We determined that Nox4 Tyr-491 was phosphorylated after IGF-I stimulation and was responsible for Nox4 binding to the SH2 domain of Grb2. Overexpression of a Nox4 mutant, Y491F, prevented Nox4/Grb2 association. Importantly, it also prevented Nox4 recruitment to SHPS-1. The role of Grb2 was confirmed using a Pyk2 Y881F mutant, which blocked Grb2 recruitment to SHPS-1. Cells expressing this mutant had impaired Nox4 recruitment to SHPS-1. IGF-I-stimulated downstream signaling and biological actions were also significantly impaired in Nox4 Y491F-overexpressing cells. Disruption of Nox4 recruitment to SHPS-1 in aorta from diabetic mice inhibited IGF-I-stimulated Src oxidation and activation as well as cell proliferation. These findings provide insight into the mechanism by which localized Nox4-derived ROS regulates the sustained activity of a tyrosine kinase that is critical for mediating signal transduction and biological actions.  相似文献   
65.
We examined the relationship between grip strength declines and muscle-tendon responses induced by long-term performance of a high-repetition, low-force (HRLF) reaching task in rats. We hypothesized that grip strength declines would correlate with inflammation, fibrosis and degradation in flexor digitorum muscles and tendons. Grip strength declined after training, and further in weeks 18 and 24, in reach limbs of HRLF rats. Flexor digitorum tissues of reach limbs showed low-grade increases in inflammatory cytokines: IL-1β after training and in week 18, IL-1α in week 18, TNF-α and IL-6 after training and in week 24, and IL-10 in week 24, with greater increases in tendons than muscles. Similar cytokine increases were detected in serum with HRLF: IL-1α and IL-10 in week 18, and TNF-α and IL-6 in week 24. Grip strength correlated inversely with IL-6 in muscles, tendons and serum, and TNF-α in muscles and serum. Four fibrogenic proteins, TGFB1, CTGF, PDGFab and PDGFbb, and hydroxyproline, a marker of collagen synthesis, increased in serum in HRLF weeks 18 or 24, concomitant with epitendon thickening, increased muscle and tendon TGFB1 and CTGF. A collagenolytic gelatinase, MMP2, increased by week 18 in serum, tendons and muscles of HRLF rats. Grip strength correlated inversely with TGFB1 in muscles, tendons and serum; with CTGF-immunoreactive fibroblasts in tendons; and with MMP2 in tendons and serum. Thus, motor declines correlated with low-grade systemic and musculotendinous inflammation throughout task performance, and increased fibrogenic and degradative proteins with prolonged task performance. Serum TNF-α, IL-6, TGFB1, CTGF and MMP2 may serve as serum biomarkers of work-related musculoskeletal disorders, although further studies in humans are needed.  相似文献   
66.
Caliciviruses use reinitiation of translation governed by a ‘termination upstream ribosomal binding site’ (TURBS) for expression of their minor capsid protein VP2. Mutation analysis allowed to identify sequences surrounding the translational start/stop site of the feline calicivirus (FCV) that fine tune reinitiation frequency. A selection of these changes was introduced into the infectious FCV cDNA clone to check the influence of altered VP2 levels on virus replication. In addition, full length constructs were established that displayed a conformation, in which VP2 expression occurred under control of a duplicated subgenomic promoter. Viable viruses recovered from such constructs revealed a rather broad range of VP2 expression levels but comparable growth kinetics showing that caliciviruses can tolerate gross changes of the VP2 expression level.  相似文献   
67.
Posterior Capsular Opacification (PCO) is the capsule fibrosis developed on implanted IntraOcular Lens (IOL) by the de-differentiation of Lens Epithelial Cells (LECs) undergoing Epithelial Mesenchymal Transition (EMT). Literature has shown that the incidence of PCO is multifactorial including the patient''s age or disease, surgical technique, and IOL design and material. Reports comparing hydrophilic and hydrophobic acrylic IOLs have shown that the former has more severe PCO. On the other hand, we have previously demonstrated that the adhesion of LECs is favored on hydrophobic compared to hydrophilic materials. By combining these two facts and contemporary knowledge in PCO development via the EMT pathway, we propose a biomimetically inspired strategy to promote LEC adhesion without de-differentiation to reduce the risk of PCO development. By surface grafting of a cell adhesion molecule (RGD peptide) onto the conventional hydrophilic acrylic IOL material, the surface-functionalized IOL can be used to reconstitute a capsule-LEC-IOL sandwich structure, which has been considered to prevent PCO formation in literature. Our results show that the innovative biomaterial improves LEC adhesion, while also exhibiting similar optical (light transmittance, optical bench) and mechanical (haptic compression force, IOL injection force) properties compared to the starting material. In addition, compared to the hydrophobic IOL material, our bioactive biomaterial exhibits similar abilities in LEC adhesion, morphology maintenance, and EMT biomarker expression, which is the crucial pathway to induce PCO. The in vitro assays suggest that this biomaterial has the potential to reduce the risk factor of PCO development.  相似文献   
68.
A major challenge for successful immunotherapy against glioma is the identification and characterization of validated targets. We have taken a bioinformatics approach towards understanding the biological context of IL-13 receptor α2 (IL13Rα2) expression in brain tumors, and its functional significance for patient survival. Querying multiple gene expression databases, we show that IL13Rα2 expression increases with glioma malignancy grade, and expression for high-grade tumors is bimodal, with approximately 58% of WHO grade IV gliomas over-expressing this receptor. By several measures, IL13Rα2 expression in patient samples and low-passage primary glioma lines most consistently correlates with the expression of signature genes defining mesenchymal subclass tumors and negatively correlates with proneural signature genes as defined by two studies. Positive associations were also noted with proliferative signature genes, whereas no consistent associations were found with either classical or neural signature genes. Probing the potential functional consequences of this mesenchymal association through IPA analysis suggests that IL13Rα2 expression is associated with activation of proinflammatory and immune pathways characteristic of mesenchymal subclass tumors. In addition, survival analyses indicate that IL13Rα2 over-expression is associated with poor patient prognosis, a single gene correlation ranking IL13Rα2 in the top ~1% of total gene expression probes with regard to survival association with WHO IV gliomas. This study better defines the functional consequences of IL13Rα2 expression by demonstrating association with mesenchymal signature gene expression and poor patient prognosis. It thus highlights the utility of IL13Rα2 as a therapeutic target, and helps define patient populations most likely to respond to immunotherapy in present and future clinical trials.  相似文献   
69.
Research has established decreased sensory habituation as a defining feature in migraine, while decreased cognitive habituation has only been found with regard to cognitive assessment of the relative probability of the occurrence of a stimulus event. Our study extended the investigation of interictal habituation in migraine to include cognitive processing when viewing of a series of visually-complex images, similar to those we encounter on the internet everyday. We examined interictal neurocognitive function in migraine from a habituation perspective, using a novel paradigm designed to assess how the response to a series of images changes over time. Two groups of participants--migraineurs (N = 25) and non-migraine controls (N = 25)--were asked to view a set of 232 unfamiliar logos in the context of a target identification task as their brain electrical responses were recorded via event-related potentials (ERPs). The set of logos was viewed serially in each of 10 separate trial blocks, with data analysis focusing on how the ERP responses to the logos in frontal electrodes from 200-600 ms changed across time within each group. For the controls, we found that the amplitude of the late positive potential (LPP) ERP component elicited by the logos had no significant change across trial blocks. In contrast, in migraineurs we found that the LPP significantly increased in amplitude across trial blocks, an effect consistent with a lack of habituation to visual stimuli seen in previous research. Our findings provide empirical support abnormal cognitive processing of complex visual images across time in migraineurs that goes beyond the sensory-level habituation found in previous research.  相似文献   
70.
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF−/−, or p53−/−), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号